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The study of simultaneous flow of
two phases of matter is a subject of
recent interest due to its importance in
various industrial applications, nuclear
problems,  automobiles,  aerospace
science and combustion processes. This
study may be divided into two groups:
the first group consists of the flow
problem of the mixture of two phases of
four states of matter viz; solid (pseudo
tluid), liquid, gas and plasma (ionised
gas) mixed  homogeneously  or
inhomogeneously. The second group
consists of the flow problems in which
the interaction between two phases of
matter through their interface is
considered. We may classify the flow
problems of the two phase flow into the
following classes:

(i) flow of the mixture of liquid and
gas.

(ii) flow of the mixture of solid
particles and liquid.

(iii) flow of the mixture of gas and
solid particles.

(iv) flow of the mixture of liquid and
plasma.

(v) flow of the mixture of solid
particles and plasma.

(vi) flow of the mixture of ordinary

gas and ionised gas etc..

Before considering equations of two
phase flow we go through the
general equations governing flow of a
gas.
1- General Equations Governing the
Flow of a Gas:

In the study of fluid flow, the
fundamental equations governing the

motion of the fluid are (Courant and
Friedrics (1948), Pai (1959), Zeldovich
and Raizer (1967)).

(i)  Equation of state which connects
the temperature T, the pressure p and
the density o of the fluid. For a perfect

gas the equation may be written as
1) p=pR'T
R' being the gas constant

(ii) Equation of continuity which
expresses the conservation of mass of
the fluid. If q represents the velocity of
the fluid at any time t, the equation of
continuity may be written as,

(12 9P, 4 _0
5 4v(Pq)

(iii) Equation of motion which
expresses the relation of conservation of
momentum in the fluid. Neglecting the
body forces and considering only
inertial and pressure forces, the
equation of motion may be written as

(1.3) & _-gradp

Dt
where [ is the usual mobile
Dt
operator given by
(14) D 0
—=te(g.N)
Dr ot
(iv) Equation of energy which

expresses the conservation of energy in
the fluid. This can be expressed as

(1.5) De, D(1)_
ool 578
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where e and Q are internal energy and
the energy generated by external
sources per unit time per unit mass of
the fluid. In the particular case of
thermodynamic equilibrium and in the
absence of external heat sources, this
equations is equivalent to the entropy
equation,

(1.6) DS
Dt

which is the same as the adiabatic flow
condition. S is defined as entropy per
unit mass of the fluid.

The speed of sound enters the
gasdynamic equation as the velocity of
propagation of small disturbances. In
the limiting case, where changes Apin

0

density and Ap in the pressure,

accompanying the fluid motion are very
small in comparison to the average
values of the density o and pressure

i and where the flow velocities are

small in comparison with the speed of
sound ¢, the gasdynamic equations
become acoustic equations describing
the propagation of sound waves.
Neglecting second order quantities and
considering only the plane case of a
uniform fluid, we may write the
continuity equation and the equation of
motion in the following forms,

(1.7) © ot
—(Ap)=—p. —
81( 0) o o

and

(1.8)

u dp| 0O
LI -
P, [apl = (P

where

(1.9) .
Ap:[;p J Ap
ap ).

and u is the velocity of the fluid in the
X direction.

Here we have used the fact that the
particle motion in the sound wave is
isentropic. This isentropic derivative
represents the square of the sound
speed i.e.

(1.10) e p
op ),

Using the well known thermodynamic
formula, the square of the velocity ot
sound in a perfect gas is given by

1) o _yp
P

where }/, as usual is the ratio of specific

heats.
2- Shock Wave and its Formation:

Shock wave is a most conspicuous
phenomena which occur in nature. In a
supersonic flow of a gas it behaves like a
surface of discontinuity across which
flow variables ie. velocity, density,
pressure and temperature change
abruptly. The occurrence of shock
waves is commonly associated with
supersonic flight, explosion in air and in

astrophysical situations, electric
discharges etc. Shock wave has great
importance  for several practical

aeronautical problems. In fact, shock
waves may cause sudden change in the
aerodynamic behaviour of high speed
aerocrafts affecting not only their
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balance and their stability but also
controlling undesirable vibrations.

A simple explanation for the shock
tormation in an ordinary gas can be
given as follows:

Let a piston be moving uniformly into
an open ended tube filled with virgin
gas. Suppose the continuous motion of
the piston is approximated by a set of
forward moving pulses each of short
duration. When the piston moves the
first short movement forward, a small
disturbance is propagated forward into
the gas at the speed of sound. This small
amplitude wave heats the gas slightly,
the second pulse will be propagate as
another sound wave at a speed slightly
in excess of the first one. Similarly the
third pulse be propagated at a speed
slightly in excess of second and so on.
Thus the discrete pulses cause a train of
sound waves of even increasing velocity
to be propagated through the gas. The
tendency is for faster moving rearmost
waves to catch up with the slower
moving foremost one. In so doing the
sound waves coalesce to form a more
powerful shock front moving at a speed
which is in excess of the local speed of
sound.

Actually shock wave is not a
discontinuity surface in strict sense but
it is a layer of small finite thickness
across which the physical properties
change continuously. If thickness is
small in comparison to some
appropriate macroscopic dimension of
the tlow field the physical relationship
may be obtained by an analysis which
treats it as discontinuity surface. In this
case the assumption of small thickness
of layer is a fundamental one. The study

of the physical properties of the tluid
within the small but finite thickness of
the discontinuity is termed as structure
of the shock waves. From a
mathematical point of view, a
discontinuity can be regarded as the
limiting case of very large but finite
gradients in the flow variables across a
layer whose thickness tends to zero.
Since in the dynamics of an inviscid and
non-conducting gas there are no
characteristic lengths, the existence of
arbitrary thin transition layers is
possible. In the limit of vanishing
thickness these layers reduce to
discontinuities. Such  discontinuities
represent shock waves.

Since discontinuity is infinitesimally
thin, no accumulation of mass,
momentum or energy can take place
within it. Consequently, the fluxes of
these quantities on both sides of the
discontinuity are equal and therefore,

treating the discontinuity in a
coordinate system in which it is
stationary, we have the following
equations
2 -
e pu=p
2 2

22 —
@2 p +pur=p,+p Uy
(23) pl ul2 pn ué

e +—+—L=¢,+—+—

| 2 2

P Po

Where u, PP and e are the particle

velocity, density, pressure and internal
energy per unit mass and subscripts o
and 1 indicate values of the quantities
just ahead and behind the discontinuity
surface. These equations (2.1) - (2.3) are
known as shock conditions across a
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normal shock in an ideal gas. The flow
ahead of the shock must be supersonic
while behind the shock it may be
supersonic or subsonic depending on
the inclination of the incident stream to
the normal of the wave. If the incident
stream is parallel to the normal of the
wave, the flow behind the shock is
always subsonic.

Hugoniot (1889) first showed that in
absence  of  viscosity and  heat
conduction conservation of energy
implies conservation of entropy in
continuous tlow and also implies
change of entropy across a shock.
Rayleigh (1910) pointed out that the
entropy must increase in crossing a
shock front and that for this reason, a
rarefaction shock wave can not occur in
a perfect gas. In most cases of the fluid
flow we consider negligible viscosity
and heat conduction, but when large
gradients of temperature and velocity
develop, the effects of viscosity and heat
conduction become important. Viscosity
and thermal conductivity present
themselves as diffusion phenomenon
arising respectively from the molecular
transfer of momentum and energy and
they have the effect of smoothing out
the discontinuity. By now, the theory of
shock waves in homogeneous and non-
homogeneous conducting or non
conduction media has been extensively
studied by several authors such as
Courant and Friedrics (1948), Taylor
(1950), Whitham (1958), Sedov (1959),
Pai  (1959), Stanykovich  (1960),
Kompaneets (1960), Sakurai (1965),
Zeldovich and Raizer (1967), Hayes
(1968), Laumbach and Probstein (1969),
Korobeinikov (1971), Whitham (1974),
Mishkin and Fujimoto (1978), Ojha and

Onkar ( 1993), Ojha and Srivastava
(2011) and so on.

3. Basic Equations in a Mixture of Gas
and Small Solid Particles:

When a large number of solid
particles flow in a fluid and the velocity
of the fluid is sufficiently large, the
behaviour of such solid particles is
similar to the fluid. Assuming these
solid particles as pseudo fluid we can
consider the tlow of the fluid as a
mixture of real fluid (gas or liquid) and
the pseudo fluid of solid particles. To
discuss the flow of the above mixture,
consider an element of the mixture of
mass M occupied by volume V in the
flow such that (Marble (1970), Murray
(1965 ), Soo (1967), Pai (1977), Rudinger
(1980) etc)

GBI M= Mg+ Mp
(32) V=vVg+Vp

where subscripts g and p refer to the
values for the gas and the solid particles
respectively.

Suppose each particle is a sphere of

radius  and n is the number of solid
p p

particles per unit volume at a point in
the flow field, then volume v occupied
P

by all solid particles in the volume V is
given by

3.3 _
(3.3) vp—np\/‘rp

where 4
T

3 i.e. volume of each
= Ir
p 3 p
solid particle. The mass of the solid
particles in the volume V of the mixture
is
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3.4
(3:4) Mp=mpnPV

where 117 is the mass of each particle.
P

The species density of the solid particles
is defined as

(3.5) o - M, m,
sp
VP TP

Hence the species density of solid
particles is a constant for a given flow.

The partial density of the solid particles
in volume V is defined as

3.6 M
6o M,

p Vv pUp sp

where Z represents the fraction of
volume of solid particles in the mixture.
This Z is one of the important variables
in the treatment of two phase flow of a
gas and small solid particles and is
defined as
C”)Z:E:nt

AV pp

Thus, P the partial density of the solid
p

particles is also one of the fundamental
variables in analysis of the mixture flow
problems and is proportional to Z or

1’lp'

Similarly, we have also the species
density of the fluid and the partial
density of the fluid too. The species
density of the real fluid is defined as

(3.8)

pgz \[g

and the partial density of the real fluid
is defined as

(3.9)

E M_MY, _M:-’(V_VP
'V VvV vV
Suppose in the mixture of a gas and
small solid particles, gas is an ideal gas
and therefore from the equation of state

for a perfect gas

=(1 ZM""—I V4
=1-)3t=0-2)p,

(3.10) p, = R.Bng
here

w P,

and partial temperature of the gas in the

mixture and R’ is the gas constant.

and T are the partial pressure
g

Let the total pressure of the mixture is
the sum of the partial pressure of the

gas |, and partial of the pseudo-fluid of
g

solid particles p. - then

p

11
G p—p +p,

From (3.9) and (3.10), we may write

The total pressure p may be also defined
as

3.13 ;
(313) 5 _Rip T,

since p is species density.
g

From (3.11), (3.12) and (3.13) we define
that

(3.14) pg <= (1 —Z)p and pp = Zp

The equation of state for the pseudo-
fluid of solid particles is defined simply
as

(3.15) Pgp = constant.
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In case of thermodynamic equilibrium,
T =T =T. The density of the mixture
p g '

as whole is given by

(316) o= 7p_+(1-Z)p, =p, +p,

The mass concentration of the pseudo
fluid particles is defined as

(3.17)
k =

P

Py _Zpy

p p

In equilibrium flow, k is constant in
p

the whole flow field and therefore from
equation (3.17)

(3.18) Z. constant
Yo,
in the whole flow field.

Also, from equations (3.16) and (3.17),
we can write

k

P

(1-k,)G+k,

(3.19) £

where

_ )Osp

Pe
of the mixture.

(3.20) G , called compressibility

Again, in case of thermodynamic
equilibrium,  writing _+ _—and
Tng pr

using the equations (3.13), (3.16) and
(3.17) we can define a relation between
the pressure and density of the mixture
as whole

(1-k,)
(1-2)

This equation is known as equation of
state for a mixture of gas and small solid

(3iZl) =

PR'T

particles as whole. We can write (3.21)
in the form

Rapl
22 =l i
(322) p )
R,=(-k,)R'

where R is effective gas constant of the

mixture. It is interesting to notice that if
the volume fraction Z of the solid
particles is negligibly small, the perfect
gas law holds with effective gas
constant R . For many engineering

problems, we do have a very small
value of Z but £, is not negligible in

comparison with unity. On the other
hand if Z is not negligibly small in
comparison with unity, the volume
fraction Z ot the solid particles does
affect the equation of state of the
mixture as a whole because Z is a

function of O .

The internal energy e of the mixture per
unit mass is related to the internal
energies of the two species by the
following relation

or

e=kc. T

pospTp

(3.24) +(1-k, ), T

where ¢, is the specific heat of the gas at
constant volume and ¢, =c, +c,,. Here

¢, being an effective specific heat at

constant volume of the pseudo-fluid of
solid particles due to random
translational motion and ¢ is the
specific heat of the solid particles due to
the internal degree of freedom. For
thermodynamic equilibrium condition,
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we have the specific heat of the mixture
at constant volume is given by c¢

vm 7

where

(325) C\'m = kpc.\‘,') + (1 - kp)cr ’ C.\p and
¢, are taken as constant.

The specific heat of the mixture at
constant pressure is given by

(3.26) Cpm = kpc,s'p + (1 i kp )C}’

when ¢, is the specific heat of the gas at

constant pressure.

The specific heats of the mixture are
independent of the volume fraction Z
but depend on the mass concentration
k, of solid particles. The ratio of specific

heats of the mixture is
(3:27)

=3

1+
= Cm _ Ak Doy ke, “/[ Y ] = v +8p°

c (1-k, e, +kc, 1+p'8 1+38p'

vin

where

(3.28) c C k

T s 1 P 1
Y C’B c. l—kp

v Vv

The ratio I'is always smaller than the
ratio y of the gas if | is different from
p

A = 0, =,
zero. As kp I Y
From (3.25) and (3.26), we obtain
(329) Cpm - Cvm = (] . kp)R'

where _~ —R!
c,—¢,=R

Again from (3.27) and (3.29), we have

(3.30) (1-k,)R' 3
C - F
vin r_l
(1 —kp)R'F

C n =T

: -1
and therefore
(3.31)

e - URRT (-2
vm r_l (r_l) p

The first law of thermodynamics for the
mixture is given by

(3.32)

dQ=de-Ldp

where dQ is the amount of heat added
per unit mass of the mixture

In case of isentropic flow, dQ=0 and
therefore

(3.33)

This equation is the energy equation of
the mixture as a whole. using equations
(3.21), (3.31) and (3.33) we obtain

B3 ar 1 g

TC-DT (-2)p

since , for constant
Fo= E kp
psp
integration of (3.34) gives
3.35 —(I'-1)
( ) T P = constant
=&

If Z<<1, the isentropic change of state of
the mixture has similar relation as that
tor a pure gas with an effective ratio of
the specific heats I'. In general the
volume fraction Z has some influence on
the isentropic change of the mixture.
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Similarly from equation (3.21) for a
given kp we have

B39 g ar_ 1 dp

p T 1-Zp
putting the value of d_T from (3.34) and
T

then integrating,

we obtain

(3.37) 5 -r= constant.
p[l - zj

Again if Z7Z<<l, equation (3.37) is
identical in form for the corresponding
relation of pure gas with an effective
ratio of specific heats.

The speed of sound in equilibrium state
of the mixture can be obtained from
(3.37) as am where

(3-38) o 4 Tp _TRT
Yodp p(1-2) (1-2y
The ratio of the equilibrium sound

speed of the mixture am to that of the
gas C is

|
339a, ( I
c \y(-2)
where % I
p
4. One Dimensional Fundamental
Equations of Motion and Shock

Conditions in a Mixture of Gas and
Solid Particles:

The Equation of Continuity:

The unsteady one dimensional equation
of continuity for a mixture of gas and

small solid particles is given by (Pai
(1977), Conforto (2001), Steiner and
Hirschler (2002), Ojha and Srivastava
(2007) etc)

op  Op Ou ipu

+u—+p—+—=0

41
) ot or or r

where i =0, 1 and 2 corresponding to the
plane, cylindrical and  spherical
symmetry respectively; pis the density
of the mixture as whole, u the flow
velocity of the mixture and r and t are
space and time coordinates respectively.

The Equation of Motion:

In absence of viscosity and heat
conduction the equation of motion for
the unsteady one-dimensional flow of
the mixture of gas and small solid
particles can be written as

5 %
(4.2) @+u(’—w+i(’p =0
ot or por

where p is the pressure of the mixture
The Equation of Energy:

The energy equation for unsteady one-
dimensional flow of the mixture of a gas
and small solid particles in which the
viscous stress and heat conduction are
assumed to be negligible can be written

as
-
%jzo

4.
(43) " o

O o 0
G2 fi[ p
2

o or
where e is the internal energy per unit
mass ot the mixture of gas and small
solid particles.

If heat conduction and radiation heat
flux are taken into account then
equation of energy can be written as

109



Vol.1 Issue No.2-3 August- December, 2015

ISSN 2394 - 9805

(Gretler and Regenfelder (2002), Ojha
and Srivastava (2011)).

(4.4

2 O O O .
L2222 Lm0
ot or p\ ot aor ) pr'or

where F is the total heat flux and is
given by

45) F=F.+F

where £ is conduction heat flux and

E(, the radiation heat flux. i=0,1,2 for

planar, cylindrical —and
symmetry respectively.

spherical

The conduction heat flux F. is given by

Fourier’s law of heat conduction which
1s

or
45y Fa——K=—
(46) Fo=-K—
where K is the coefficient of thermal
conductivity of the gas. The radiation
heat flux F, is given by (Pomraning

(1973), Gretler and Regnfelder (2002))

o 4o )or
@7 “r=73 @ | (OF

where o is the Stefan-Boltzmann
constant and «, is the Roseland mean

absorption coetficient.

The thermal conductivity K and the

absorption coefficient &), of the
medium are assumed to vary with
temperature and density (Ghoniem et al
(1982), Gretler and Regenfelder (2002))

as

T Pe S
(4.8) K:K(,(?] [ﬁ] ;
T, 2
T B 0 S
Op =0y | = —_
) (P

where subscript ‘0" denotes a reference
state.

The generalised shock conditions in a
mixture of gas and small solid particles
are

4.9) P (U_uz) = plU

(4.10) P> +p2(U—u3)2 = P +)OIU2
(4.11)

&3 8ns (s +ﬂ+%U3

Py 2 £
(4.12) 4L _4
P P

Here, it is assumed that the wviscous
stress and heat conduction of the
mixture are negligible.

If conduction and radiation heat flux are
taken into account then the shock
condition (4.11) takes the form

(4.13)
e, +22 +1(U—u3)2 =el+ﬂ+lU2+ F
Py 2 P2 plU

where the subscripts 2 and 1 denote
conditions immediately behind and
ahead of the shock respectively and U
denotes the shock velocity.

Recently shock waves in a mixture of
small solid particles and a gas have been
studied extensively by several authors,
e.g. Suzuki et al (1975) Pai et al (1980),
Miura and Glass (1985), Jena and
Sharma (1999), Vishwakarma (2000),
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Gretler and Regenfeldor (2001, 2002),
Steiner and Hirschler (2002),
Vishwakarma and Pandey (2003), Ojha
and Srivastava (2007) etc.

5. Thermodynamics of the Non-Ideal
Gas and a Mixture of a Gas and Small
Solid Particles:

At high  temperature  the
assumption of gas to be perfect is in
general not true. The perfect gas law can
be applied only to actual gases with
sufficient accuracy. This approximation
may however be inadequate in a
situation such as that arises in the case
of strong explosion. It is then necessary
to take into account of the deviations of
an actual gas from the ideal state which
results from interaction between its
component molecules.

In general the thermal equation of
state for an actual gas is given by
(Cambel, Duclos and Anderson (1963))

(5.1) p=06pR'T

where 0 is the departure coefficient
depending on the existing physical
conditions. For a perfect gas 6 =1

From statistical mechanics of the gas the
thermal equation of state may be written
in the form (Landau and Lifshitz (1958))

(5.2) p=pRT (A +bip+acp?+.......)

called virial equation of state. The
temperature dependent quantities b1, ¢
etc. are called the second, third etc. virial
coefficients. At high temperature the
coefficients b1 and c¢1 tend to constant

8
In many physical cases the introduction

of the second coefficient is sufficient. For

values equal to h and _ respectively.
b

gases b p <<1, b being the internal
volume of the gas molecules, it is
sufficient to consider the equation of
state in the form (Anisimov and Spiner
(1972), Ranga Rao and Purohit (1976),
Ojha and Tiwari (1993), Roberts and Wu
(2003), Ojha and Srivastava (2011))

(53) p=pR'T(1+ bp)

or equivalently

5.4 T ,

649 ,_RT . 1
V-b 0

specific volume of the gas.

being

If e is the internal energy per unit mass
of the gas, then from thermodynamics,

(5.9) 3 ;.
)73 -
ov ), oT ),

Using the equation of state (5.3) in (5.5)
we get oe is negligible which shows
)

J

oV

that

(5.6) e =cT ;cv is the specific heat at
constant volume.

Using equation (5.5) in the first law of
thermodynamics, we have

(5.7) . ‘
e
or ),\or ),

where , is the specific heat of the gas at

Y4
constant pressure.
Using (5.3) in equation (5.7) we get

P T 14 28p)

neglecting the higher powers of y)

1

Equation (5.8) implies that
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(5.9) R

¢, =——

y—1
The equation (5.3), (5.4) and (5.9) give
the internal energy e as a function of p
and p i.e.

(5.10) ) )
_ P plU+bp)  plV—b)
p(+bp)y-1) p(y—1 =1

The speed of sound C,may be

calculated from (5.3) as follows:

511 g
L) 2 _dp _(+2bp)yp
" dp (l+bp)p
For a gas obeying virial equation
R'T which  undergoes  an
=y

isentropic process

(5.12) p(V —b)’ = Const.

1+—
C

v

where ?/* _[ R'J with constant C,

The equation of state for a mixture of a
non-ideal gas and pseudo-fluid of small
solid particles is given by (Vishwakarma
and Nath (2009))

(513)  1-k,
p= ﬁ[l +bp(1-k,)]pR'T

The internal energy per unit mass of the
mixture of a non-ideal gas and small
solid particles is given by

(5.14) o(l-2)

T+ bp(1—k, )]

If we consider the mixture as a
homogeneous medium, the first law of
thermodynamics for the mixture gives

(5.15) |
dQ =de—— pdp
P

where dQ is the heat addition to the
mixture per unit mass.

For isentropic change of state of the
mixture we have dQ=0, therefore we
can derive an equation

(5.16) dr _[1+bp(l=k)ldp

LT  1=Z p

From equation (5.13), we have
(5.17)

dp_|_ T C-Db-k)  b-k)
p |(1-2)p 3 1+bp(l-k,)
or

(5.18)

4 [1+bp(l—kp)](l_Z)—(l—lJf,(l—A-,,;
constant

The equilibrium speed of sound of the
mixture of a non-ideal gas and small
solid particles can be obtained as

(5.19)

: |
c :{d_pT _ \C+Q2C=-2)bp(1-k,)ip |?
" \dp (1=2)\1+bp(1-k, )} p

neglecting j? 102
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